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A B S T R A C T

The Soil Moisture Active and Passive (SMAP) mission, launched by the National Aeronautics and Space
Administration (NASA) on 31st January 2015, was designed to provide global soil moisture every 2 to 3 days at
9 km resolution by downscaling SMAP passive microwave observations obtained at 36 km resolution using active
microwave observations at 3 km resolution, and then retrieving soil moisture from the resulting 9 km brightness
temperature product. This study evaluated the SMAP Active/Passive (AP) downscaling algorithm together with
other resolution enhancement techniques. Airborne passive microwave observations acquired at 1 km resolution
over the Murrumbidgee River catchment in south-eastern Australia during the fourth and fifth Soil Moisture
Active Passive Experiments (SMAPEx-4/5) were used as reference data. The SMAPEx-4/5 data were collected in
May and September 2015, respectively, and aggregated to 9 km for direct comparison with a number of available
resolution-enhanced brightness temperature estimates. The results show that the SMAP AP downscaled
brightness temperature had a correlation coefficient (R) of 0.84 and Root-Mean-Squared Error (RMSE) of ~10 K,
while SMAP Enhanced, Nearest Neighbour, Weighted Average, and the Smoothing Filter-based Modulation
(SFIM) brightness temperature estimates had somewhat better performance (RMSEs of ~7 K and an R exceeding
0.9). Although the SFIM had the lowest unbiased RMSE of ~6 K, the effect of cloud cover on Ka-band ob-
servations limits data availability.

1. Introduction

Soil moisture is a key variable at the interface between the atmo-
sphere and the land surface, affecting global water, energy, and carbon
cycles (Falloon et al., 2011; Jung et al., 2010; Seneviratne et al., 2010).
Information on its temporal and spatial distribution is required for a
variety of disciplines including hydrology, meteorology, climate, and
agriculture (Crow et al., 2012; Ryu and Famiglietti, 2006; Sellers et al.,
1997). Due to its all-weather capability, direct relationship with volu-
metric soil moisture content, and reduced impacts from vegetation and
surface roughness, passive microwave remote sensing techniques have
been widely acknowledged as the most promising approach to measure
near surface soil moisture (Ulaby et al., 1981). Therefore, the first space
mission dedicated to global soil moisture monitoring was launched on
2nd November 2009; the Soil Moisture and Ocean Salinity (SMOS)

satellite, operated by the European Space Agency, carries an L-band
(1.41 GHz) microwave radiometer to observe volumetric soil water
content of the top 5 cm with a spatial resolution of 40 km (Kerr et al.,
2010). However, to satisfy the spatial resolution requirement of better
than 10 km for hydrometeorological applications (Crow et al., 2005;
Entekhabi et al., 1999), a number of algorithms have been proposed to
downscale the microwave radiometer observations using ancillary op-
tical or radar data with a higher resolution (Peng et al., 2017; Sabaghy
et al., 2018). Subsequently, the downscaled radiometer observations
can be used to retrieve soil moisture with improved spatial resolutions
using radiative transfer models (de Rosnay et al., 2009; Mo et al., 1982;
Wigneron et al., 2007). As an innovative solution, the Soil Moisture
Active Passive (SMAP) mission, launched by the National Aeronautics
and Space Administration (NASA) on 31st January 2015, was designed
to estimate global soil moisture with a resolution of 9 km using a
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combined L-band (1.41 GHz) radiometer and L-band (1.26 GHz) radar
(Entekhabi et al., 2010). SMAP uses a conically scanning mesh antenna
to provide oversampled brightness temperatures in 3-dB elliptical
footprints of 39 km by 47 km with a spacing of 11 km along scans and
31 km across scans. The SMAP radiometer brightness temperature ob-
servations are resampled onto a 36 km grid and downscaled to 9 km by
merging them with 3 km radar backscatter observations acquired si-
multaneously. This was possible until the failure of the SMAP radar on
7th July 2015. As a consequence of this failure, a number of alternative
resolution enhancement algorithms have been considered to downscale
the SMAP radiometer observations (and/or retrieved soil moisture).
The objective of this paper is to evaluate their performance using air-
borne radiometer observations collected during the SMAPEx-4/5 field
experiments. It needs to be noted that SMAPEx-4 was the only extensive
airborne field experiment accomplished world-wide prior to the mal-
function of the SMAP radar, making it a unique data set for validating
the SMAP Active/Passive downscaling algorithm.

2. Study area

The Soil Moisture Active Passive Experiments (SMAPEx) are a series
of five airborne field campaigns across different seasons conducted over
a six year timeframe (2010 to 2015) (Panciera et al., 2014; Ye et al.
submitted). The fourth and fifth SMAPEx experiments (SMAPEx-4/5)
took place at the beginning of the SMAP operational phase in May and
September 2015, respectively, to provide extensive airborne and
ground sampling data for the SMAP in-orbit validation (Ye et al. sub-
mitted). Airborne radar and radiometer observations were collected
over the same frequencies as the SMAP instruments and timed to co-
incide with the regular SMAP overpasses.

The SMAPEx-4/5 experiments were conducted in the Yanco area of
the Murrumbidgee River catchment in south-eastern Australia (Fig. 1).
This SMAP core validation site (Colliander et al., 2017) is dominated by
flat cropping and grazing lands. An area in size of 71 km×89 km
(containing at least a complete 3-dB footprint of the SMAP radiometer
in each orbit) was designed for the SMAP validation flights. Ad-
ditionally, an area of 95 km×116 km (containing a 3-dB footprint of
Beam 2 of the Aquarius radiometer on 11th May 2015) was included
during SMAPEx-4. Due to the failure of Aquarius on 7th June 2015,
only the SMAP validation flight area was sampled during SMAPEx-5.
Consequently, only data over the SMAP validation flight area were
compared in this study.

During SMAPEx-4, the main land surface types were bare soil in
cropping areas and short grass across the grazing areas. Soil moisture
conditions started at ~0.1m3/m3 with an average vegetation water
content of ~0.1 kg/m2, followed by rainfall events on 9th and 18th
May, resulting in heterogeneous soil moisture scenarios for the SMAP
downscaling validation under low vegetation conditions. The SMAPEx-
5 campaign started after a series of extensive rainfall events with no
further rainfall during the campaign. This provided an ideal dry-down
period, resulting in a wide range of soil moisture scenarios. In addition,
the main vegetation types were wheat in the cropping areas and dense
grasses in the grazing areas. The vegetation water content was higher
than during SMAPEx-4 (up to ~2 kg/m2) and had a strong variation
across the campaign period due to high growth rates during the Austral
spring.

3. Data sets

In the literature, a number of algorithms have been developed for
SMAP data downscaling, and can be categorized into three classes: i)
radar-downscaled; ii) radiometer-only; and iii) optical/radiometer-
downscaled. The SMAP mission was designed to downscale 36 km
radiometer observations using its own on-board L-band radar. The ac-
tive/passive concept was the main SMAP downscaling approach until
the failure of the SMAP radar. Subsequently, Das et al. (2016) proposed

an alternative radar downscaling approach using the Sentinel C-band
radar observations (Rüdiger et al., 2016; Torres et al., 2012). Moreover,
as the SMAP radiometer conically scans the ground with a 3-dB ellip-
tical footprint of 39 km by 47 km every 11 km along scan circles and
every 31 km between scan circles, several radiometer-only algorithms
have been proposed for directly interpolating the oversampled SMAP
radiometer observations to 9 km resolution using different posting ap-
proaches: nearest neighbour, weighted average, and deconvolution
(Backus and Gilbert, 1970; Chan et al., 2018; Dumedah et al., 2014;
Entekhabi et al., 2010; Gevaert et al., 2016). Alternative approaches
include the use of high resolution optical and radiometer observations
to downscale SMAP radiometer observations to 1 km resolution
(Gevaert et al., 2016). However, the availability of optical and high
frequency radiometer is adversely influenced by cloud cover and in-
tense precipitation, which in turn limits the application of optical/
radiometer downscaling algorithms.

In this study, the five brightness temperature downscaling algo-
rithms listed in Table 1 were evaluated, using the SMAPEx airborne
observations as the independent reference. The following sub-sections
describe the details of the respective products. Among them, SMAP
Active/Passive and SMAP Enhanced products can be freely downloaded
from the NASA EarthData website (https://earthdata.nasa.gov), the
other data sets need to be requested from the authors. It should also be
noted that the Sentinel radar downscaling algorithm could not be
evaluated in this study due to there being no Sentinel-1 coverage co-
incident with SMAP overpasses during the periods of SMAPEx-4.

A. SMAPEx

The SMAPEx brightness temperature observations were collected
using the Polarimetric L-Band Multi-beam Radiometer (PLMR) which
provides dual-polarized (horizontally and vertically) brightness tem-
perature observations at L-band (1.41 GHz) from six beams at incidence
angles of 7°, 21.5° and 38.5° on both sides of the flight track. At the
flight altitude of ~3000m above the ground, airborne PLMR brightness
temperature observations at 1 km resolution were collected between
3 am and 9 am (local time), being centred on the nominal SMAP des-
cending/morning overpass time; it was found from calculations using
ground monitoring station data that the near surface soil brightness
temperature varied by only ~1 K during the individual flights, due to
minimal variations of the effective soil temperature during the
morning. The acquired PLMR observations were normalized to the in-
cidence angle of the outer beams (38.5°) following the approach of Ye
et al. (2015), and thermally corrected to the SMAP nominal overpass
time of 6 am using a polynomial regression approach. Before and after
each flight, the calibration of PLMR was confirmed by using the sky as a
cold target and microwave absorber as a warm target. An accuracy of
better than 1.4 K was found for both horizontal and vertical polariza-
tions throughout SMAPEx-4/5. However, a bias of −2.4 K and corre-
lation coefficient of 0.97 was observed when comparing PLMR bright-
ness temperature observations and SMAP radiometer L1C data at 36 km
scale (Ye et al. submitted). Consequently, for the purpose of evaluating
the five SMAP downscaled brightness temperature approaches listed
above, this bias was removed from all PLMR brightness temperature
observations prior to their use as an independent reference in this
study. The characteristics of SMAPEx PLMR brightness temperature
observations and SMAP downscaled brightness temperature estimates
are summarized in Table 1.

B. SMAP AP

The SMAP Active/Passive (AP) downscaled brightness temperature
product was planned to be a key SMAP standard product with 9 km
resolution (Entekhabi et al., 2010). A linear relationship between
changes in radiometer brightness temperature and changes in radar
backscatter, derived from time-series radar and radiometer
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measurements over each pixel, was used to disaggregate the 36-km
brightness temperature observations using the 3-km backscatter ob-
servations (Entekhabi et al., 2014). In this study, the SMAP L2 SM AP
product in version R11850 was used.

C. SMAP Enhanced

The SMAP Enhanced brightness temperature product (Backus and
Gilbert, 1970; Chan et al., 2018) is an interpolation of the SMAP L1B
brightness temperature onto the EASE-2 9-km grid using the Backus-
Gilbert algorithm, which can estimate brightness temperatures on a
regular grid with a higher posting resolution of 9 km (BG does not
modify the original resolution of ~33 km) and a lower error from ir-
regular sampling data (Chaubell, 2016). The interpolation, which fully
accounts for the antenna pattern, is considered “optimal” in the sense
that the interpolated value would be similar to the value obtained if the
measurement had actually been taken. In this study, the SMAP L2 SM P
E product in version R16010 was used.

D. Nearest Neighbour

According to a previous study on SMOS brightness temperatures
(Dumedah et al., 2014), oversampled coarse resolution passive micro-
wave data can be posted onto a higher resolution grid using the nearest
neighbour approach, and result in a reasonable level of error (4.5 K for
horizontal polarization and 3.9 K for vertical polarization) compared
with airborne brightness temperature observations as truth. In this
approach, the centre part of the SMAP 3-dB footprint was assumed to
contribute most of the signal observed by the SMAP radiometer. The
SMAP L1B brightness temperature data (version R16010) in both fore-
and aft-ward looking directions were resampled together onto the
SMAP EASE-2 9-km grid using the nearest neighbour approach for
evaluation in this study.

E. Weighted Average

The SMAP L1B brightness temperature data are averaged to the
SMAP EASE-2 9-km grid weighted by their antenna gain patterns within
the given pixel. In this study, the Weighted Average data in fore- and
aft-ward looking directions were averaged before comparison with
SMAPEx data.

F. Smoothing Filter-based Modulation (SFIM)

The Smoothing Filter-based Modulation (SFIM) technique (Liu,
2000) was used to sharpen the coarse resolution SMAP radiometer
brightness temperature data using higher resolution Ka-band brightness
temperatures collected from the Advanced Microwave Scanning
Radiometer 2 (AMSR2) (Gevaert et al., 2016). The higher resolution
AMSR2 Ka-band brightness temperatures were aggregated to the lower

resolution of the SMAP L1C brightness temperatures using a low pass
filter. The ratio between the high and low resolution Ka-band bright-
ness temperatures was then used to modulate the low-resolution SMAP
brightness temperatures. The downscaled brightness temperatures were
gridded onto 0.1° grid in the geographic WGS84 system, using a linear
interpolation approach. In this study, the SFIM downscaling was per-
formed only for days with SMAP descending (morning) and AMSR2
descending (night) overpasses available within a 6-hour interval. Due to
the atmospheric effects of intense precipitation events at Ka-band, the
SFIM downscaling is only applicable over the areas without intense
precipitation.

4. Results and discussion

During SMAPEx-4/5, a total of 16 flights were conducted, with two
of them not coinciding with a SMAP data acquisition due to problems of
the SMAP star tracker and data downlink, respectively. The observed
PLMR brightness temperature data at 1 km resolution was averaged to
the grid of each SMAP downscaled brightness temperature estimate and
compared with those brightness temperature values. As discussed
above, it is worth noting that limiting the flight interval to 6-h in the
early morning minimized surface soil temperature variations, which in
turn limited the impact of temporal variation in the airborne brightness
temperature observations. Figs. 2 and 3 show the horizontally polarized
brightness temperature maps of averaged SMAPEx data on the EASE-2
9-km grid together with the SMAP downscaled brightness temperature
estimates. As expected, vertically polarized brightness temperatures
(not shown) had a similar spatial pattern to the horizontally polarized
brightness temperature, but with a different range. Generally, all of the
downscaled SMAP brightness temperature estimates had a similar
temporal variation to the SMAPEx airborne data during the entire
periods of SMAPEx-4/5, including the rainfall events on 9th and 18th
May 2015. The SMAP Enhanced, Nearest Neighbour, Weighted
Average, and SFIM brightness temperature estimates have similar and
smoothed spatial distributions. Although local variability has been re-
duced, these brightness temperatures can still reflect the distribution
pattern caused by the rainfall event on 18th May 2015. In contrast, the
SMAP AP product had significant noise-like heterogeneity which may
be attributed to the unaccounted spatial variation in surface roughness
and “noisy” radar backscatter signal used in the downscaling.

In order to assess their performance, the SMAP downscaled
brightness temperature estimates were compared with the averaged
SMAPEx data at pixel level (Fig. 4). In addition, Root-Mean-Squared
Error (RMSE) and correlation coefficient (R) between SMAP down-
scaled brightness temperature estimates and PLMR brightness tem-
perature observations were calculated (see Figs. 5 and 6 respectively).
All SMAP downscaled brightness temperature estimates have a good
correlation to PLMR observations across the full range of observed
brightness temperatures over the study area. However, a horizontal
cluster pattern can be found in the SMAP Enhanced, Nearest Neighbour

Fig. 1. Location of the SMAPEx-4/5 flight areas in the Murrumbidgee River catchment overlain with the Digital Elevation Model (DEM) and the SMAP EASE-2 36-km
grid (top panel); Location of the SMAP validation flight area overlain with the land use map and the SMAP EASE-2 grids at 9-km scales (bottom panel).

Table 1
Summary of SMAPEx observations and SMAP downscaled brightness temperature estimates.

Algorithm Class Source Grid Resolution

SMAPEx PLMR UTM S55 1 km
SMAP AP Radar downscaled SMAP radiometer & radar EASE-2 9 km
SMAP enhanced Radiometer only SMAP radiometer EASE-2 9 km
Nearest neighbour Radiometer only SMAP radiometer EASE-2 9 km
Weighted average Radiometer only SMAP radiometer EASE-2 9 km
SFIM Optical/radiometer

downscaled
SMAP radiometer &AMSR-2 WGS84 0.1°
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and Weighted Average brightness temperature estimates, which were
resampled from the SMAP 36-km radiometer observations alone. As
expected, the nested 9-km pixels interpolated from the same 36-km
pixel had a similar brightness temperature to the 36-km pixel with very
limited variation when compared with the natural variability of
SMAPEx data.

Moran's I spatial autocorrelation statistic (Moran, 1950) was also
calculated for each sampling day and product, in order to investigate

the temporal variation of spatial correlation between SMAPEx ob-
servations and the SMAP downscaled brightness temperature products.
Given the small number of 9-km pixels over the study area, the weight
factor in Moran's I function was simply defined as 1 for neighbouring
pixels and 0 otherwise. Fig. 7 shows the time series of spatial auto-
correlation of SMAP downscaled brightness temperature products and
averaged SMAPEx brightness temperature on the SMAP 9-km EASE-2
grid. It needs to be noted that SMAPEx brightness temperature on 11th

Fig. 2. SMAPEx PLMR observed and SMAP downscaled brightness temperature observations in horizontal polarization (TBh) over the SMAP validation flight area
(black box) during SMAPEx-4.
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May only covered a half of the SMAP validation flight area, resulting in
a sudden decrease in Moran's I statistics. It can be found from Fig. 7 that
the SMAP Enhanced and Weighted Average products had similar tem-
poral variation and highest spatial correlation and that the SMAP AP
product showed the lowest values. Taking the SMAPEx dataset as the
reference, it implies that the spatial heterogeneity in SMAP Enhanced
and Weighted Average products was significantly smeared, while ad-
ditional noise from radar data was introduced in the SMAP AP product.
Although the Nearest Neighbour and SFIM products had slightly better

local spatial heterogeneity than the SMAP Enhanced and Weighted
Average products, their considerable polarization differences and
temporal trends of spatial correlation did not match those of SMAPEx.
In contrast, the SMAP Enhanced and Weighted Average products had
similar spatial correlation between horizontal and vertical polariza-
tions.

Taking the averaged SMAPEx brightness temperature observations
as an independent reference, the bias, correlation coefficient (R), Root-
Mean-Squared Error (RMSE), and unbiased RMSE (ubRMSE) were

Fig. 3. Same as Fig. 2 except for SMAPEx-5.
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calculated for each brightness temperature estimate (Table 2). Ac-
cording to the statistics, all the SMAP downscaled brightness tem-
perature estimates had a lower R and higher RMSE under the hetero-
geneous conditions of SMAPEx-4 than the more homogeneous
conditions of SMAPEx-5. An R better than 0.9 was achieved for all
SMAP downscaled brightness temperature estimates except for SMAP
AP (0.85). Similarly, SMAP AP had the highest RMSE of 11.64 K in
horizontal polarization and 9.74 K in vertical polarization. Although
SFIM had the highest bias in vertical polarization, its ubRMSEs in both
polarizations were lower than other brightness temperature estimates.
Compared to the horizontally polarized brightness temperature, the
vertically polarized brightness temperature had a lower ubRMSE in all
products, implying that it has a lower sensitivity to soil moisture. In
addition, the vertically polarized brightness temperature had a higher
bias in most of products. However, this might be a site-specific artefact
and more experiments are required to identify the reasons behind this

result.
According to evaluation results, the SMAP AP algorithm in the radar

downscaling class had the poorest performance, as the SMAP radar
added considerable noise to the downscaled brightness temperatures
compared to radiometer-only downscaling products. The three radio-
meter-only downscaling algorithms had good and almost identical
performance, since they were interpolated from SMAP L1B brightness
temperature observations using different posting approaches. Under
homogeneous conditions, different downscaled brightness temperatures
methods in the radiometer-only class yielded similar values to the ori-
ginal SMAP radiometer observations. While the SMAP Enhanced and
Weighted Average downscaling algorithms were able to improve the
resolution of the SMAP radiometer observations, they also displayed a
smoothed spatial pattern. Although the Nearest Neighbour was able to
retain some local heterogeneity, its arbitrary assumption that the
radiometer observation is mainly determined by the centre part of the

Fig. 4. Comparison between SMAP downscaled products and PLMR brightness temperature observations collected during SMAPEx-4/5.
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footprint can induce considerable error over areas with significant le-
vels of heterogeneity, such as coasts, where parts of the footprint might
impact on the overall observed brightness temperature. The SFIM al-
gorithm in the optical/radiometer downscaled class had the best per-
formance with slightly better RMSE and ubRMSE than the radiometer-
only class. However, being similar to other optical/radiometer down-
scaling approaches, the SFIM downscaled products can be affected by
cloud and/or intense precipitation.

In practice, the radiometer-only class can provide SMAP down-
scaling under all-weather conditions and without the need for input
from other satellites. In particular, the SMAP Enhanced product is
suggested due to its public availability, professional quality control, and
capability of working over very heterogeneous areas. Based on the
limited results from SMAPEx-4, the unique dataset obtained when the
SMAP radar was operational, it can be concluded that the SMAP AP

algorithm can be replaced with other downscaling algorithms, such as
the SMAP Enhanced downscaling algorithms, for providing adequate
global 9-km resolution brightness temperature products. The perfor-
mance of other radar downscaling algorithms, such as Sentinel-1
downscaling algorithms, still needs to be further investigated.

5. Conclusions

The SMAP satellite, launched on 31st January 2015, aimed at pro-
viding global soil moisture with an unprecedented resolution of 9 km by
downscaling 36-km radiometer brightness temperature observations
using coincident 3-km radar backscatter observations. However, due to
the failure of the on-board radar a number of alternative algorithms
were proposed to downscale the SMAP radiometer observations. This
study evaluated the currently available SMAP downscaled brightness

Fig. 5. Spatial maps of temporal RMSE between SMAP downscaled brightness temperature estimates and PLMR brightness temperature observations in horizontal
polarization over the SMAP validation flight area (black box) during SMAPEx-4/5.

Fig. 6. Spatial maps of temporal correlation coefficient (R) between SMAP downscaled brightness temperature estimates and PLMR brightness temperature ob-
servations in horizontal polarization over the SMAP validation flight area (black box) during SMAPEx-4/5.
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temperature estimates over the study area for the periods of SMAPEx-4/
5, using airborne brightness temperature observations collected from
the SMAPEx airborne field experiments as an independent reference.
The comparison indicated that all SMAP downscaled brightness

temperatures had higher correlation and lower RMSE when compared
to airborne passive microwave observations in the more homogeneous
scenarios during SMAPEx-5. The SMAP AP product was found to have
the lowest correlation coefficient of 0.84 and highest RMSE of 11.64
and 9.74 K for horizontal and vertical polarizations respectively. The
other SMAP downscaled brightness temperatures had a RMSE of ~7 K
and a correlation coefficient of better than 0.9. Although the SFIM
method can be adversely affected by intense precipitation, its unbiased
RMSE of ~6 K was slightly lower than others. The SMAP Enhanced,
Nearest Neighbour and Weighted Average brightness temperature es-
timates derived from the SMAP radiometer observations alone using
different interpolation techniques all had a similar performance, with
an unbiased RMSE of ~7 K. It is therefore concluded that any of these
approaches can be an acceptable alternative for downscaling the SMAP
brightness temperature at 9-km resolution. The SMAP Enhanced
downscaled product is suggested as a suitable replacement for the
SMAP Active/Passive product for practical applications at ~9-km
scales, due to its good performance, data availability, and reliability
over heterogeneous areas.

Fig. 7. Time series of spatial autocorrelation (Moran's I) of PLMR and SMAP downscaled brightness temperature maps in horizontal and vertical polarization during
SMAPEx-4 (top) and −5 (bottom).

Table 2
Statistics of horizontally (vertically) polarized brightness temperature com-
parison between averaged airborne brightness temperature observations and
SMAP downscaled estimates, including Bias, correlation coefficient (R), Root-
Mean-Squared Error (RMSE), and unbiased RMSE (ubRMSE) for SMAPEx-4 and
-5 (top and bottom lines respectively).

SMAPEx-4
SMAPEx-5

Bias
[K]

R
[−]

RMSE
[K]

ubRMSE
[K]

SMAP AP 2.40(4.15)
-

0.85(0.84)
-

11.64(9.74)
-

11.39(8.81)
-

SMAP enhanced 3.31(5.63)
1.18(3.04)

0.93(0.93)
0.92(0.90)

8.68(8.40)
6.32(6.29)

8.02(6.24)
6.21(5.50)

Nearest neighbour 3.24(5.62)
1.06(2.98)

0.93(0.93)
0.92(0.90)

8.71(8.37)
6.45(6.36)

8.08(6.20)
6.36(5.62)

Weighted average 1.32(3.42)
-1.20(0.62)

0.92(0.92)
0.92(0.90)

8.53(7.37)
6.48(5.70)

8.43(6.52)
6.36(5.66)

SFIM 2.77(6.39)
0.26(3.20)

0.93(0.92)
0.94(0.91)

8.09(8.70)
5.86(6.23)

7.60(5.90)
5.86(5.35)
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